Abstract

Sea surface temperature (SST) anomalies caused by a warm core eddy (WCE) in the Southwestern Atlantic Ocean (SWA) rendered a crucial influence on modifying the marine atmospheric boundary layer (MABL). During the first cruise to support the Antarctic Modeling and Observation System (ATMOS) project, a WCE that was shed from the Brazil Current was sampled. Apart from traditional meteorological measurements, we used the Eddy Covariance method to directly measure the ocean–atmosphere sensible heat, latent heat, momentum, and carbon dioxide (CO2) fluxes. The mechanisms of pressure adjustment and vertical mixing that can make the MABL unstable were both identified. The WCE also acted to increase the surface winds and heat fluxes from the ocean to the atmosphere. Oceanic regions at middle and high latitudes are expected to absorb atmospheric CO2, and are thereby considered as sinks, due to their cold waters. Instead, the presence of this WCE in midlatitudes, surrounded by predominantly cold waters, caused the ocean to locally act as a CO2 source. The contribution to the atmosphere was estimated as 0.3 ± 0.04 mmol m−2 day−1, averaged over the sampling period. The CO2 transfer velocity coefficient (K) was determined using a quadratic fit and showed an adequate representation of ocean–atmosphere fluxes. The ocean–atmosphere CO2, momentum, and heat fluxes were each closely correlated with the SST. The increase of SST inside the WCE clearly resulted in larger magnitudes of all of the ocean–atmosphere fluxes studied here. This study adds to our understanding of how oceanic mesoscale structures, such as this WCE, affect the overlying atmosphere.

Highlights

  • Sea surface temperature (SST) anomalies caused by a warm core eddy (WCE) in the Southwestern Atlantic Ocean (SWA) rendered a crucial influence on modifying the marine atmospheric boundary layer (MABL)

  • Ocean eddies play a fundamental role in transporting and mixing properties between regions with heterogeneous characteristics. In this observational turbulent flux study in the Southwestern Atlantic Ocean, we presented and highlighted the ability of a warm core ocean eddy shed from the Brazil Current to modify both the ocean and the surrounding atmosphere

  • Since 2012 the Southwestern Atlantic Ocean has been sampled during research cruises using the Eddy Covariance (EC) method to directly measure the ocean–atmosphere heat, momentum, and gas fluxes in combination with more traditional methods of observing the ocean and the atmosphere from s­ hips[2,3,40]

Read more

Summary

Introduction

Sea surface temperature (SST) anomalies caused by a warm core eddy (WCE) in the Southwestern Atlantic Ocean (SWA) rendered a crucial influence on modifying the marine atmospheric boundary layer (MABL). Our calculations are novel for this study region over this kind of oceanic mesoscale structures and reveal that approximately 1.3% of the ocean heat energy excess contained inside the WCE were transferred to the atmosphere, during the sampling period when our in situ measurements were made.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call