Abstract

AbstractAlong the eastern seaboard of the U.S. from Florida to Maine, sea level rise (SLR) shows notable patterns and significant deviation from the global mean, which have been attributed to land subsidence. Consistent with several recent studies, we analyze various observation and modeling data, and find that ocean dynamics is also an important factor in explaining these coastal SLR patterns. Despite a southward shift since the 1990s, an overall northward shift of the Gulf Stream during the twentieth century contributed to the faster SLR in the Mid‐Atlantic region (North Carolina to New Jersey). In response to the 21st century climatic forcing, the rise (fall) of the dynamic sea level north (south) of Cape Hatteras is mainly induced by the significant decline of ocean density contrast across the Gulf Stream. This baroclinic process is the likely cause of the recent switch of the coastal SLR to a pattern with faster (slower) rates north (south) of Cape Hatteras.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.