Abstract

This study is concerned with the extraction of directional ocean wave spectra from synthetic aperture radar (SAR) image spectra. The statistical estimation problem underlying the wave-SAR inverse problem is examined in detail in order to properly quantify the wave information content of SAR. As a concrete focus, a data set is considered comprising six RADARSAT SAR images co-located with a directional wave buoy off the east coast of Canada. These SAR data are transformed into inter-look image cross-spectra based on two looks at the same ocean scene separated by 0.4 s. The general problem of wave extraction from SAR is cast in terms of a statistical estimation problem that includes the observed SAR spectra, the wave-SAR transform, and prior spectral wave information. The central role of the weighting functions (inverse of the error covariances) is demonstrated, as well as the consequence of approximate (based on the quasilinear wave-SAR transform) versus exact linearizations on the convergence properties of the algorithm. Error estimates are derived and discussed. This statistical framework is applied to the extraction of spectral wave information from observed RADARSAT SAR image cross-spectra. A modified wave-SAR transform is used to account for case-specific geophysical and imaging effects. Analysis of the residual error of simulated and observed SAR spectra motivates a canonical form for the SAR observation error covariance. Wave estimates are then extracted from the SAR spectra, including wavenumber dependent error estimates and explicit identification of spectral null spaces where the SAR contains no wave information. Band-limited SAR wave information is also combined with prior (buoy) spectral wave estimates through parameterization of the wave spectral shape and use of regularization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.