Abstract
Worldwide, rising ocean temperatures are causing declines and range shifts in marine species. The direct effects of climate change on the biology of marine organisms are often well documented; yet, knowledge on the indirect effects, particularly through trophic interactions, is largely lacking. We provide evidence of ocean warming decoupling critical trophic interactions supporting a commercially important mollusc in a climate change hotspot. Dietary assessments of the Australian blacklip abalone (Haliotis rubra) indicate primary dependency on a widespread macroalgal species (Phyllospora comosa) which we show to be in state of decline due to ocean warming, resulting in abalone biomass reductions. Niche models suggest further declines in P.comosa over the coming decades and ongoing risks to H.rubra. This study highlights the importance of studies from climate change hotspots and understanding the interplay between climate and trophic interactions when determining the likely response of marine species to environmental changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.