Abstract

Tidal currents and surface amplitudes are calculated globally for the dominating diurnal and semidiurnal constituents using an established tidal model under a range of altered bathymetry. The purpose is to evaluate if the well-known amplification of the global tides during the Last Glacial Maximum (LGM) is related to changed propagation properties for the tidal wave or to changed damping due to removal of shelf seas. The response of the tides and tidal dissipation to future sea-level rise is also discussed. The tides in the present and LGM oceans were simulated first, followed by runs where the present day bathymetry was used but the shelf seas removed by the introduction of vertical walls or where sea level is allowed to rise. Previously reported results regarding tidal amplitudes and dissipation rates are reproduced in the control runs. The runs without shelf seas show significantly enhanced tidal amplitudes in the North Atlantic, whereas sea-level rise of 5 m above present levels show a significant shift in the amphidromic points on a local and regional scale but had a limited effect on the open ocean tides. Simulations with very large sea-level rise show a significantly decreased global tidal dissipation, whereas experiments without friction in present-day shallow water display results similar to those with no shelf seas. The results all point towards changing damping properties due to the removal of shelf seas as being the mechanism behind the LGM amplification, and they imply the importance of implementing future sea-level changes properly in tidal simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.