Abstract

The soil moisture active passive (SMAP) L-band synthetic aperture radar (SAR) could continuously provide global km scale ocean surface wind observations, which had a better coverage than other SARs and a higher spatial resolution than scatterometers. This paper investigates SMAP normalized radar cross sections (NRCS) dependence on wind vectors using more than 5 million matchups consisting of Defense Meteorological Satellite Program F17 Special Sensor Microwave Image/Sounder wind speed, National Center for Environmental Predication wind direction and SMAP L-band NRCS. An L-band geophysical model function (GMF) is proposed for SMAP wind retrieval on the basis of these matchups, and it indicates wind speed and direction dependence of SMAP L-band NRCS for about 40° incidence angle and 0–25 m/s wind speed range in both HH and VV polarization. The wind speed dependence increases rapidly with wind speed, and HH-polarized one is greater than VV polarization. The upwind–downwind difference for HH polarization is greater than that for VV polarization. A negative upwind–crosswind asymmetry occurs for HH- and VV-polarized backscatter at lower wind speeds. The retrieved SMAP wind speed using the proposed GMF is validated by using National Data Buoy Center buoy winds. The root mean square differences and biases are 1.77 and 0.19 m/s, respectively. The accuracies of SMAP wind speeds at 0–10 m/s range are better than those at higher wind speed range. In addition, SMAP wind speeds in upwind and downwind directions are relatively more accurate than those in crosswind directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call