Abstract

Ocean stratification plays a crucial role in many biogeochemical processes of dissolved matter, but our understanding of its impact on widespread organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), remains limited. By analyzing dissolved PAHs collected from global oceans and marginal seas, we found different patterns in vertical distributions of PAHs in relation to ocean primary productivity and stratification index. Notably, a significant positive logarithmic relationship (R2 = 0.50, p < 0.05) was observed between the stratification index and the PAH stock. To further investigate the impact of ocean stratification on PAHs, we developed a deep learning neural network model. This model incorporated input variables determining the state of the seawater or the stock of PAHs. The modeled PAH stocks displayed substantial agreement with the observed values (R2 ≥ 0.92), suggesting that intensified stratification could prompt the accumulation of PAHs in the water column. Given the amplified effect of global warming, it is imperative to give more attention to increased ocean stratification and its impact on the environmental fate of organic pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call