Abstract
The development of intelligent oceans requires exploration and an understanding of the various characteristics of the oceans. The emerging Internet of Underwater Things (IoUT) is an extension of the Internet of Things (IoT) to underwater environments, and the ability of IoUT to be combined with deep learning technologies is a powerful technology for realizing intelligent oceans. The underwater acoustic (UWA) communication network is essential to IoUT. The thermocline with drastic temperature and density variations can significantly limit the connectivity and communication performance between IoUT nodes. To more accurately capture the complexity and variability of ocean remote sensing data, we first sample and analyze ocean remote sensing datasets and provide sufficient evidence to validate the temporal redundancy properties of the data. We propose an innovative deep learning approach called Ocean-Mixer. This approach consists of three modules: an embedding module, a mixer module, and a prediction module. The embedding module first processes the location and attribute information of the ocean water and then passes it to the subsequent modules. In the mixing module, we apply a temporal decomposition strategy to eliminate redundant information and capture temporal and channel features through a self-attention mechanism and a multilayer perceptron (MLP). The prediction module ultimately discerns and integrates the temporal and channel relationships and interactions among various ocean features, ensuring precise forecasting. Numerous experiments on ocean temperature and salinity datasets show that Mixer-Ocean performs well in improving the accuracy of time series prediction. Mixer-Ocean is designed to support multi-step prediction and capture the changes in the ocean environment over a long period, thus facilitating efficient management and timely decision-making for innovative ocean-oriented applications, which has far-reaching significance for developing and conserving marine resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.