Abstract

A series of experiments was performed at sea where the effectiveness of dispersants applied from a helicopter was tested on fresh and weathered crude oils released from a surface research vessel. In conjunction with these experiments, remote sensing measurements using an array of airborne optical and microwave sensors were performed in order to aid in the interpretation of the dispersant effectiveness and to obtain quantitative images of oil on the sea under controlled conditions. Surface oil thickness and volume are inferred from airborne measurements using a dual-channel microwave imaging radiometer, aerial color photography, and an airborne oceanographic lidar. The remotely sensed measurements are compared with point sampled data obtained using a research vessel. The mass balance computations of surface versus subsurface oil volume using remotely sensed and point sampled data are consistent with each other and with the volumes of oil released. Data collected by the several techniques concur in indicating that, for the oils used and under the sea conditions encountered, the dispersant and application method are primarily useful when applied to fresh oil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call