Abstract

AbstractThe Antarctic ice sheet is buttressed by floating ice shelves that calve icebergs along large fractures called rifts. Despite the significant influence exerted by rifting on ice shelf geometry and buttressing, the scarcity of in situ observations of rift propagation contributes considerable uncertainty to understanding rift dynamics. Here, we report the first‐ever seismic recording of a multiple‐kilometer rift propagation event. Remote sensing and seismic recordings reveal that a rift in the Pine Island Glacier Ice Shelf extended 10.53 km at a speed of 35.1 m/s, the fastest known ice fracture at this scale. We simulate ocean‐coupled rift propagation and find that the dynamics of water flow within the rift limit the propagation rate, resulting in rupture two orders of magnitude slower than typically predicted for brittle fracture. Using seismic recordings of the elastic waves generated during rift propagation, we estimate that ocean water flows into the rift at a rate of at least 2,300 m3/s during rift propagation and causes mixing in the subshelf cavity. Our observations support the hypotheses that large ice shelf rift propagation events are brittle, hydrodynamically limited, and exhibit sensitive coupling with the surrounding ocean.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.