Abstract
Accurate atmospheric correction (AC) is one fundamental and essential step for successful ocean colour remote-sensing applications. Currently, most ACs and the associated ocean colour remote-sensing applications are restricted to solar zenith angles (SZAs) lower than 70°. The ACs under high SZAs present degraded accuracy or even failure problems, rendering the satellite retrievals of water quality parameters more challenging. Additionally, the complexity of the bio-optical properties of the coastal waters and the presence of complex aerosols add to the difficulty of AC. To address this challenge, this study proposed an AC algorithm based on extreme gradient boosting (XGBoost) for optically complex waters under high SZAs. The algorithm presented in this research has been developed using pairs of Geostationary Ocean Colour Imager (GOCI) high-quality noontime remote-sensing reflectance (Rrs) and the Rayleigh-corrected reflectance (ρrc) derived from the Ocean Colour–Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART) in the morning (08:55 LT) and at dusk (15:55 LT). The algorithm was further examined using the daily GOCI images acquired in the morning and at dusk, and the hourly (total suspended sediment) TSS concentration was also obtained based on the atmospherically corrected GOCI data. The results showed that: (i) the model produced an accurate fitting performance (R2 ≥ 0.90, RMSD ≤ 0.0034 sr−1); (ii) the model had a high validation accuracy with an independent dataset (R2 = 0.92–0.97, MAPD = 8.2–26.81% and quality assurance (QA) score = 0.9–1); and (iii) the model successfully retrieved more valid Rrs for GOCI images under high SZAs and enhanced the accuracy and coverage of TSS mapping. This algorithm has great potential to be applied to AC for optically complex waters under high SZAs, thus increasing the frequency of available observations in a day.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.