Abstract

Three distinct ocean bottom seismograph (OBS) systems have been developed at the Hawaii Institute of Geophysics to satisfy the different requirements for short-range refraction and anisotropy experiments, long-range refraction experiments, and short-term and semi-permanent monitoring for earthquakes. One system, originally designed for semi-permanent use in conjunction with a monster buoy of the IDOE North Pacific Experiment has been modified for emplacement off Oahu. It contains 3-component 1 Hz seismometers and a hydrophone and obtains power and transmits data via tow conductor cable. Two additional systems were designed for short-term use: a 2 Hz telemetering system (TOBS); and 4.5 Hz free-fall pop-up system (POBS). The TOBS contains 3-component seismometers and a hydrophone and transmits data to the ship via light-weight single-conductor electromechanical cable and an HF-VHF radio link from a surface buoy. The bottom package also includes a backup tape recorder. This system exhibits the advantages of real-time data acquisition (e.g. precise timing, rapid appraisal of data quality, optimum use of explosives, and common recording with other data) and the complexities and difficulties associated with a deep-sea mooring. However, use of cable with near neutral bouyancy permits the design of a deep-water system with low weights and stress levels. The POBS is a self-contained package containing a vertical and single horizontal seismometer, hydrophone, cassette tape recorder, and pre-set timed release. This system is relatively simple and inexpensive. Total weight of 150 kg in air (before launch) permits emplacement and retrieval from a ship with no special equipment by two (strong) persons. Experience to data suggests that the optimum deployment scheme for many studies is a combination of TOBS's and POBS's.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call