Abstract

Ocean acidification threatens to disrupt interactions between organisms throughout marine ecosystems. The diversity of reef-building organisms decreases as seawater CO2 increases along natural gradients, yet soft-bodied animals, such as sea anemones, are often resilient. We sequenced the polyA-enriched transcriptome of adult sea anemone Anemonia viridis and its dinoflagellate symbiont sampled along a natural CO2 gradient in Italy to assess stress levels in these organisms. We found that about 1.4% of the anemone transcripts, but only ~0.5% of the Symbiodinium sp. transcripts were differentially expressed. Processes enriched at high seawater CO2 were mainly linked to cellular stress, including significant up-regulation of protective cellular functions and deregulation of metabolic pathways. Transposable elements were differentially expressed at high seawater CO2, with an extreme up-regulation (> 100-fold) of the BEL-family of long terminal repeat retrotransposons. Seawater acidified by CO2 generated a significant stress reaction in A. viridis, but no bleaching was observed and Symbiodinium sp. appeared to be less affected. These observed changes indicate the mechanisms by which A. viridis acclimate to survive chronic exposure to ocean acidification conditions. We conclude that many organisms that are common in acidified conditions may nevertheless incur costs due to hypercapnia and/or lowered carbonate saturation states.

Highlights

  • Reef-forming cnidarians are in global decline due to rapidly increasing levels of atmospheric CO2 [1], yet non-calcified cnidarians appear to be more resilient [2,3,4,5,6]

  • We investigated the transcriptomic response of A. viridis living in high seawater CO2 conditions to find out whether these conditions were stressful for A. viridis

  • Adult polyps of the sea anemone A. viridis were sampled from three different locations along a natural CO2 gradient near a set of volcanic seeps off Vulcano Island, Sicily (Italy), representing seawater pH conditions 8.2, 7.9, and 7.6 (Fig 1A and 1B)

Read more

Summary

Introduction

Reef-forming cnidarians are in global decline due to rapidly increasing levels of atmospheric CO2 [1], yet non-calcified cnidarians appear to be more resilient [2,3,4,5,6]. Ocean acidification effects on a symbiotic sea anemone

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call