Abstract

The addition of massive amounts of carbon to the ocean–atmosphere system at the Paleocene–Eocene thermal maximum (PETM, ∼ 55 Ma) caused deep-ocean acidification, evidenced by widespread dissolution of sea floor carbonate sediments. Because of the strong effect of this dissolution on the preserved record of calcium carbonate it has been difficult to evaluate whether changes in surface water chemistry affected carbonate production at the same time. Here, we investigate the production of biogenic carbonate in surface waters by testing a method which combines fossil calcareous nannoplankton counts with taxon-specific Sr/Ca data, an indicator of coccolithophore production. Reconstructed nannoplankton production at Ocean Drilling Program (ODP) Sites 690 (Southern Ocean), 1209 (Pacific Ocean) and Bass River (New Jersey) did not appear to vary significantly across the PETM indicating that on geological timescales there is no evidence for interruption of phytoplankton carbonate production, despite the major assemblage shifts associated with this interval. Either levels of carbonate chemistry change in surface waters were relatively low, perhaps a function of CO 2 emission rates, or calcareous nannoplankton were relatively insensitive to these changes compared with their response to other environmental parameters, namely temperature and nutrient availability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.