Abstract
The Lucaogou Formation carbonate-rich oil shale source rock is exposed at the southern margin of the Junggar Basin, Xinjiang, NW China. We have sampled it in detail and conducted microstructural, mineralogical and geochemical studies, including thin section petrography, UV fluorescence petrography, X-ray diffraction, vitrinite reflectance, bitumen reflectance, fluid inclusion analysis and Raman spectroscopy. Organic matter is disseminated through the carbonate-bearing siltstone source rocks and concentrated in numerous bedding parallel stylolites and in two sets of carbonate veins, one along bedding parallel fractures and the other cross-cutting stylolites and bedding. The research about maturity of organic matter finds vitrinite reflectance values increase from the dispersed kerogen (0.64%) to the stylolites (the one of oriented vitrinite is 0.72% and the one of migrated bitumen is 2.38%); Homogenization temperatures of fluid inclusions in veins containing hydrocarbon fluid inclusions show an increase from 178.5°C in the bedding parallel veins to 222°C in the cross-cutting veins, confirmed by Raman spectroscopy. These results support a model of progressive heating accompanied by fluid loss during later stages of thermal maturation of source rock and the onset of primary migration. Obviously, the occurrence of organic matter is the trace of hydrocarbon primary migration, and the bedding lamination surfaces and cross-cutting fissures are the principal pathways of hydrocarbon-bearing fluids migration. Bedding lamination surfaces evolved into stylolites along the earliest primary migration pathways, followed by bedding parallel and cross-cutting fissures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.