Abstract

The occurrence, distribution, sources, and ecological risks of organochlorine pesticides in Dongting Lake of China were investigated. The average concentrations of organochlorine pesticides (OCPs) in 22 surface water samples and 14 sediment samples were 90.07 ng/L and 80.65 ng/g dw, respectively. Sixteen types of OCPs, dominated by HCHs, DDTs and heptachlor, were detected in the Dongting Lake. The relationships of OCP residues between Dongting Lake and its tributary rivers have been discussed and the hydraulic connections with the Yangtze River and the Three Gorges Dam (TGD) were also considered. Results showed that the shortage of runoff, earlier dry season, and reduction of sediment deposition extremely deteriorated the hydraulic conditions, magnified the water cycle, and restrained the self-purification of OCPs. The ∑OCPs in surface water were concentrated in the inlets of Yangtze River, Lishui River, Zishui River, Yuanshui River, and Xiangjiang River. Moreover, the ∑OCPs in the outlet of the Yangtze River also maintained a high level, indicating that OCPs posed adverse effects on the Yangtze River. Risk assessments of OCPs in the surface water of Dongting Lake were estimated according to available water quality guidelines and health risk assessment models. The results indicated that OCPs in the surface water of Dongting Lake were safe for aquatic organisms and human health. In addition, sediment quality guidelines (SQGs) were also applied to evaluate the potential ecotoxicological risks of OCPs in sediments. The results presented that contaminants of γ-HCH; o,p'-DDD; and dieldrin in sediment had adverse effects on benthic organisms, indicating that fundamental solutions should be proposed to control OCP contamination in Dongting Lake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.