Abstract

Water vapour absorption is shown to occur in 22 species of Psocoptera inhabiting diverse environments and representing all major groups of this insect order. Evidently the faculty is a common feature of the whole order and it seems not to be related to specific environmental conditions. For the first time water vapour uptake could be demonstrated in fully winged and flying insects. The critical equilibrium humidities vary considerably among different species ranging from 58 to 85% r.h. Marked interspecific differences are also observed in water loss and uptake rates but no clear correlation with habitat or systematic group is recognizable. The uptake rates of Psocoptera are among the highest of all arthropods investigated so far. From weight recordings with a sensitive microbalance it could be seen that continuous operation of the uptake mechanism is restricted to limited periods of time of less than 1 hr regardless of the water status of the animals. Initiation and termination of the uptake process are abrupt and continuous uptake proceeds at a constant rate at a given relative humidity. Uptake rates are humidity-dependent decreasing with falling relative humidity whereas the adjustment of the equilibrium level of body water is independent of ambient humidity. Equilibrium is maintained by intermittent operation of the uptake mechanism within ca. 3% of body water mass. The uptake mechanism exhibits marked sensitivity to starvation in most members of the Psocomorpha. Some features of the uptake process of Psocoptera are in close agreement with those of Mallophaga reflecting the close relationship between the two groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.