Abstract
This study fills a challenging gap in the field of structural dynamics. A potential rule is theoretically proved: The peak displacements of undamped single-degree-of-freedom (SDOF) systems subjected to nonnegative but symmetric pulse loads necessarily occur within the pulse loading duration if the frequency ratio β<1, and after the pulse loading duration if the frequency ratio β>1. As a special case, the first peak displacements accurately take place at the end of the pulse loading when β=1. Also, the occurrence time of the first peak displacements has a theoretic value of tϕ=tp/2+T/4 in the case of β>1. Although this potential rule can be easily verified in certain cases, it has not been theoretically and systematically proved so far. A rigorous and complete proof is presented and featured by the proposed analysis based on Duhamel's integral. The analyzation circumvents the difficulties in analytically solving dynamic responses to different pulse loads in different shapes, but still reaches theoretical conclusions and yields a general law of structural dynamics. The proved law can be used to predict the occurrence phase of the first peak displacements when undamped SDOF systems subjected to nonnegative but symmetric pulse loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.