Abstract

Salmon farming industry in Chile currently uses a significant quantity of antimicrobials to control bacterial pathologies. The main aims of this study were to investigate the presence of transferable sulfonamide- and trimethoprim-resistance genes, sul and dfr, and their association with integrons among bacteria associated to Chilean salmon farming. For this purpose, 91 Gram-negative strains resistant to sulfisoxazole and/or trimethoprim recovered from various sources of seven Chilean salmonid farms and mainly identified as belonging to the Pseudomonas genus (81.0%) were studied. Patterns of antimicrobial resistance of strains showed a high incidence of resistance to florfenicol (98.9%), erythromycin (95.6%), furazolidone (90.1%) and amoxicillin (98.0%), whereas strains exhibited minimum inhibitory concentrations (MIC90) values of sulfisoxazole and trimethoprim of >4,096 and >2,048 μg mL−1, respectively. Strains were studied for their carriage of these genes by polymerase chain reaction, using specific primers, and 28 strains (30.8%) were found to carry at least one type of sul gene, mainly associated to a class 1 integron (17 strains), and identified by 16S rRNA gene sequencing as mainly belonging to the Pseudomonas genus (21 strains). Of these, 22 strains carried the sul1 gene, 3 strains carried the sul2 gene, and 3 strains carried both the sul1 and sul2 genes. Among these, 19 strains also carried the class 1 integron-integrase gene intI1, whereas the dfrA1, dfrA12 and dfrA14 genes were detected, mostly not inserted in the class 1 integron. Otherwise, the sul3 and intI2 genes were not found. In addition, the capability to transfer by conjugation these resistance determinants was evaluated in 22 selected strains, and sul and dfr genes were successfully transferred by 10 assayed strains, mainly mediated by a 10 kb plasmid, with a frequency of transfer of 1.4 × 10−5 to 8.4 × 10−3 transconjugant per recipient cell, and exhibiting a co-transference of resistance to florfenicol and oxytetracycline, currently the most used in Chilean salmon industry, suggesting an antibacterial co-selection phenomenon. This is the first report of the characterization and transferability of integrons as well as sul and dfr genes among bacteria associated to Chilean salmon farms, evidencing a relevant role of this environment as a reservoir of these genes.

Highlights

  • Intensive fish farming favors the development of infectious diseases and the use of antimicrobial agents for the treatment of bacterial infections has increased

  • Considering the role of environmental bacteria as reservoirs of antimicrobial resistance genes and the importance of salmon farming in Chile, in this study, we aimed to investigate the occurrence of sul and dfr genes, their relationship with integrons, as well as assess their capacity to be transferred by conjugation among sulfonamide- and/or trimethoprim-resistant strains recovered from various sources of Chilean salmon farms

  • The high incidence of multiresistance exhibited by the studied strains is according with previous studies of antibiotic resistant bacteria recovered from Chilean salmon farms and sites near salmon farms (Miranda and Zemelman, 2002; Miranda and Rojas, 2007; Shah et al, 2014), in which most of strains showed simultaneous resistance to 4–10 antibacterial agents

Read more

Summary

Introduction

Intensive fish farming favors the development of infectious diseases and the use of antimicrobial agents for the treatment of bacterial infections has increased. One of the consequences of this practice is the selection of resistant bacteria carrying a wide variety of antimicrobial resistance encoding genes (Miranda, 2012). The salmon farming industry in Chile used a high amount of antibiotics, and among these, potentiated sulfonamides were included. Evidence exists that these antimicrobial agents are accumulated in the environments during treatments, leading to a change in the native bacterial composition. The selection of antibiotic resistant bacteria carrying different resistance genes is expected. In the case of those inserted in plasmids and/or integrons, they can be disseminated to susceptible bacteria in different environments (Cabello et al, 2016; Watts et al, 2017)

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call