Abstract

BackgroundCanine babesiosis caused by Babesia rossi, transmitted by Haemaphysalis elliptica in South Africa, has also been reported from Nigeria. Although H. leachi (sensu lato) is widespread in sub-Saharan Africa, published literature on the occurrence of canine babesiosis is meagre. It has been postulated that the genotype of Babesia rossi Erythrocyte Membrane Antigen 1 (BrEMA1) may be linked to virulence of the specific isolate. The primary objective of this study was to detect and characterise tick-borne pathogens in dogs presented to a veterinary hospital using molecular techniques. In B. rossi-positive specimens, we aimed to determine whether the BrEMA1 gene occurred and to compare genotypes with those found in other isolates. Lastly, we wished to identify the tick species that were recovered from the sampled dogs.MethodsBlood specimens (n = 100) were collected during January to March 2010 from domestic dogs presented at an animal hospital in Jos, Plateau State, Nigeria. They were screened for the presence of Babesia/Theileria and Ehrlichia/Anaplasma genomic DNA using PCR and Reverse Line Blot (RLB) assays. Positive B. rossi specimens were tested for the presence of the BrEMA1gene using an RT-PCR. In addition, ticks were collected from dogs found to be infested during sampling.ResultsOn RLB, 72 (72%) of the specimens were positive for one or more haemoparasites. Of the positive specimens, 38 (53%) were infected with B. rossi; 9 (13%) with Theileria sp. (sable); 5 (7%) with either Ehrlichia canis or Anaplasma sp. Omatjenne, respectively; 3 (4%) with Theileria equi; and 1 (1%) with B. vogeli and E. ruminantium, respectively. Co-infections were detected in 13 (18%) of the specimens. Results of RT-PCR screening for the BrEMA1 gene were negative. A total of 146 ticks belonging to 8 species were collected and identified: Rhipicephalus sanguineus 107 (73%), Haemaphysalis leachi (sensu stricto) 27 (18%), R. turanicus 3 (2%), and Amblyomma variegatum, H. elliptica, R. lunulatus, R. muhsamae and R. senegalensis 1 (1%), respectively.ConclusionsUp to 8 tick-borne pathogens possibly occur in the dog population at Jos, with B. rossi being the most prevalent. The absence of the BrEMA1 gene suggests that B. rossi occurring in that area may be less virulent than South African isolates.

Highlights

  • Canine babesiosis caused by Babesia rossi, transmitted by Haemaphysalis elliptica in South Africa, has been reported from Nigeria

  • Canine babesiosis caused by Babesia rossi is the most common and economically important tick-borne disease in South Africa [1], where the known vector is Haemaphysalis elliptica [2]

  • Using molecular detection and characterisation on blood specimens of 181 dogs presented to veterinary hospitals in four states, B. rossi was detected in 2/17 dogs (11.8%) in Rivers State, while in Plateau State it was found in 6/41 (14.6%) dogs in Jos North and in 4/64 (4.8%) dogs in Jos South [17]

Read more

Summary

Introduction

Canine babesiosis caused by Babesia rossi, transmitted by Haemaphysalis elliptica in South Africa, has been reported from Nigeria. Canine babesiosis caused by Babesia rossi is the most common and economically important tick-borne disease in South Africa [1], where the known vector is Haemaphysalis elliptica (formerly lumped with H. leachi) [2]. B. canis (sensu stricto) and B. rossi co-infection was found in a dog that had never left Vom, Plateau State [18] This stimulated renewed interest in the epidemiology of canine babesiosis in Africa, as it was the first confirmation of the occurrence of B. canis in a geographical region were Dermacentor reticulatus, the only confirmed vector of B. canis, does not occur [18]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call