Abstract
To avoid photoinhibition, plants have developed diverse photoprotection mechanisms. One of the short-term high light protection mechanisms in plants is non-photochemical quenching (NPQ), which dissipates the absorbed light energy as thermal energy. In the green alga, Ulva linza, the kinetics of NPQ starts with an initial, quick rise followed by a decline, and then a second and higher rise at longer time periods. During the whole phase, NPQ is triggered and controlled by ΔpH, then strengthened and modulated by zeaxanthin. Light-harvesting complex (LHC) family members are known to play crucial roles in this mechanism. The PSBS protein, a member of the LHC family that was thought to be present exclusively in higher plants, has been identified for the first time in U.linza. The expression of both PSBS and LHCSR was up-regulated during high light conditions, and LHCSR increased more than PSBS. Both LHCSR and PSBS-dependent NPQ may be important strategies for adapting to the environment, and they have undoubtedly played a role in their evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.