Abstract

The ecology of purple sulfur bacteria in a sewage oxidation lagoon was investigated. Chemical changes in the lagoon were investigated by monitoring biochemical oxygen demand (BOD(5)), sulfide, sulfate, phosphate, total carbohydrates, volatile acids, alkalinity, and pH. Lagoon water temperatures were observed daily. Microbial ecological relationships were deduced by enumerating coliforms, total bacteria other than anaerobes [Tryptone Glucose Extract (TGE) agar], methane formers such as Methanobacterium formicicum, sulfate reducers, purple sulfur bacteria, and algae. Finally, two strains of purple sulfur bacteria were characterized. Two populations, purple sulfur bacteria and total bacteria (TGE agar), reached maximal concentrations in the warmest part of the 1967 summer. Purple sulfur bacteria reached maximal numbers as concentrations of sulfide and volatile acids were depleted, whereas carbohydrates and alkalinity remained unchanged. Low sulfate levels, which were not limiting for sulfate reducers, may be attributable to storage of sulfur within purple sulfur bacteria. No biological, chemical, or physical agent was linked to the removal of coliforms. The increase of algae in the late summer of 1967 may have been related to the low organic content of the lagoon during this period. Although lagoon pH (7.7 to 8.2) was favorable for purple sulfur bacterial growth, temperatures and sulfides were not optimal in the lagoon for these organisms. Chromatium vinosum and Thiocapsa floridana (the predominant lagoon purple sulfur organism in 1967 and 1968) utilized certain carbohydrates, amino acids, volatile acids, and Krebs cycle intermediates. Also purple sulfur bacteria lowered BOD levels as demonstrated by the growth of T. floridana in sterilized sewage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.