Abstract

Acylated homoserine lactones (AHLs) are self-generated signal molecules that mediate population density-dependent gene expression (quorum sensing) in a variety of Gram-negative bacteria. These signal molecules diffuse from bacterial cells and accumulate in the medium as a function of cell growth. In selected foods AHLs contribute to product spoilage. As different bacterial species produce AHL analogs that differ in length of the N-acyl chain, ranging from 4 to 14 carbons and in the substitution at the C-3 position of the side chain (i.e., oxo or hydroxyl group), the suitability and applicability of a gas chromatography–mass spectrometry direct method for characterizing trace amounts of AHLs was evaluated using N-heptanoyl-homoserine lactone as internal standard. Crude cell-free supernatants of bacterial cultures of Aeromonas hydrophila, Aeromonas salmonicida, Pseudomonas aeruginosa, Pseudomonas fluorescens, Yersinia enterocolitica, and Serratia liquefaciens were screened for AHL production in selected ion monitoring mode, using the prominent fragment at m/ z 143. The observed profiles of distinguishable N-acyl-homoserine lactones occurring in bacterial extracts were compared and discussed. The presence of a labile 3-oxo-hexanoylhomoserine lactone was evidenced but serious difficulties arose in estimating its concentration as thermal degradation occurs during the gas chromatographic separation. Its electron impact mass spectra was, however, given and interpreted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.