Abstract

It is shown by thin-layer and high-performance liquid chromatography that the two membrane lipids monoacyl-diglucosyl-diacyl-glycerol (MADGlcDAG) and monoacyl-bis-glycerophosphoryl-diglucosyl-diacyl-glycerol are synthesized by Acholeplasma laidlawii strain B-PG9 when the cells are grown in two different growth media. The two lipids are also synthesized by A. laidlawii strain A-EF22 and their chemical structures have been determined previously by NMR spectroscopy. Since a reversed hexagonal phase is the only liquid-crystalline phase formed by MADGlcDAG, it is concluded that A. laidlawii strain B-PG9, in resemblance to strain A-EF22, synthesizes three membrane lipids that are able to form reversed nonlamellar phases. A comparison of the membrane lipids from the two strains shows that there is essentially one lipid from each strain that differs. However, both these lipids have common physico-chemical properties, namely the ability to form reversed nonlamellar phases. Finally, it is also shown that novel lipids may be synthesized by A. laidlawii through long-time adaptation to altered growth conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.