Abstract

Introduction: Emerging multidrug resistance continues to be a major concern in healthcare settings. The aim of the study was to determine the resistance pattern of multidrug-resistant (MDR) Enterobacteriaceae causing urinary tract infections in our hospital and to report the occurrence of extended-spectrum beta-lactamase (ESBL), AmpC and metallo-beta-lactamase (MBL) production in them. Materials and Methods: Out of 280 MDR strains collected over a period of one year, 130 strains of Escherichia coli (96), Klebsiella spp. (31) and Enterobacter spp. (3) resistant to the second- and third-generation Cephalosporins were selected for further testing. Cefotaxime, Cefotaxime-Clavulanic acid, Ceftazidime, Ceftazidime-Clavulanic acid and Cefepime, Cefepime-Clavulanic acid Etest strips, Cefoxitin and Cefotetan with Boronic acid and Imipenem/Imipenem-EDTA Etest strips were used to detect ESBLs, AmpC and MBLs. Multiplex polymerase chain reaction (PCR) was done to detect plasmid-mediated AmpC genes. Results: Among 130 Cefoxitin-resistant strains, Cefoxitin-Boronic acid inhibitor method detected AmpC phenotype in 116 (89.2%) isolates. The overall occurrence of AmpC (n = 280) was 116 (41.42%). 92 (32.8%) isolates were found to be ESBL producers by the Clinical and Laboratory Standards Institute confirmatory method. ESBL production was detected in 107 (38.2%) more isolates by Cefepime/Cefepime-Clavulanic acid Etest. MBL producers were relatively low in our study 5 (1.8%). PCR detected CIT genotype (CMY-2) in 13 isolates (4.6%). Conclusion: This study reveals high prevalence of AmpC and ESBL co-carriage suggesting plasmid-mediated spread, indicates the need for surveillance of resistance mechanisms and takes necessary measures to control the emergence of MDR organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call