Abstract
BackgroundDespite of the sanitation measures in municipal abattoirs to reduce contamination, Escherichia coli continues to be a health hazard. The present study was conducted on 150 apparently healthy slaughtered cattle at municipal abattoir and in 50 different butcher shops in Hawassa town, Ethiopia. The objectives of the study were investigating the occurrence and antimicrobial resistance of E. coli O157:H7 isolated from fecal samples, carcasses swab, contacts surfaces (swabs of meat handlers hands, knife and clothes of meat transporters) as well as from butcher shops (meat samples, swabs from cutting board swab, butcher men hand and knife surface). E. coli O157:H7 was isolated and identified using bacteriological culture, biochemical tests and Biolog identification system. All E. coli O157:H7 isolates were then checked for their antimicrobial susceptibility pattern using eleven selected antimicrobial discs.ResultsOf the entire set of 630 samples, 2.4% (15/630) (95% CI = 1.3–3.9%) were positive for E. coli O157:H7. When disaggregated by the sources of the samples, E. coli O157:H7 were prevalent in 2.8% (11 of 390) of the abattoir samples, of which 4.7% of the fecal sample and 2.7% of the carcass swabs. And E. coli O157:H7 were positive in 1.7% (4 of 240) of butcher shop specimens of which 2% of meat sample and 3.3% of Cutting board swabs. No statistically significant difference in the prevalence of E. coli 0157: H7 between sex, origin, and breed of cattle. The isolated E. coli O157:H7 were found to be100% susceptible to cefotaxime, ceftriaxone, gentamycin, kanamycin and nalidixic acid.ConclusionThis study concludes the occurrence of E. coli O157:H7 and the presence of multiple antibiotic resistance profiles in cattle slaughtered at Hawassa municipal abattoir and retail meat sold at butcher shops. This indicates high risk to public health especially in Ethiopia where many people consume raw or under cooked meat. Regulatory control of antibiotics usage in livestock production and pharmaco-epidemiological surveillance in food animals and animal products is hereby recommended to ensure consumer safety.
Highlights
Despite of the sanitation measures in municipal abattoirs to reduce contamination, Escherichia coli continues to be a health hazard
Confirmation using OmniLog identification system resulted in 15 samples positive for E. coli O157:H7 with overall prevalence of 2.4% (95% confidence interval: 1.3– 3.9%)
In conclusion, the occurrence of E. coli O157:H7 in apparently healthy slaughtered cattle with some antimicrobial resistance pattern suggests a potential risk to public health
Summary
Despite of the sanitation measures in municipal abattoirs to reduce contamination, Escherichia coli continues to be a health hazard. Detection of E. coli in food is indicative of fecal contamination and presence of other dangerous pathogenic microorganisms which can compromise the health and wellbeing of consumers. The best example is shiga toxin-producing Escherichia coli O157:H7 (STEC O157) which can cause severe enteric infections. Symptoms of STEC O157 infection may include abdominal pain, bloody diarrhea, hemorrhagic colitis and haemolytic uremic syndrome (HUS) [1, 2]. In this respect, numerous sporadic infections and outbreaks caused by STEC O157 have been reported worldwide in many countries. Culture proven E. coli O157 diarrheal cases have been reported from a number of African countries including South Africa, Swaziland, Central African Republic, Kenya, Uganda Gabon, Nigeria and Ivory Coast [4]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.