Abstract

Investigations on GaN buffer layers grown by low-pressure metalorganic vapor phase epitaxy on (0001) sapphire substrates indicated that the mechanisms by way of which GaN buffer layers relax stresses introduced by the lattice mismatch and thermal expansion coefficient difference between GaN epilayer and sapphire substrate are related to both the crystallographic structure of GaN and thickness of the buffer layers. Beside forming misfit dislocations, mismatch-induced stresses can also be relaxed by forming stacking faults and microtwin boundaries parallel to (11-1) of GaN near the interface between GaN and sapphire substrate in cubic GaN buffer layers. It was found that, in cubic GaN buffer layers, there exists a critical thickness within which the stacking faults and/or microtwin boundaries parallel to (11-1) of GaN can be formed. This critical value is determined to be 50 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call