Abstract

On the basis of metallographic studies, the authors determined the characteristic defects of grinding balls rolled from the rejects of continuously cast billets of K76F rail steel. Relationship of the presence of internal defects of the balls with their impact resistance was established. Defects in the form of internal cracks with accumulations of non-metallic inclusions in the area of their localization and flocks have the greatest impact on the reduction of balls impact resistance. Such defects are the cause of balls destruction during impact resistance tests in 62 and 17 % of cases, respectively. The effect of internal cracks without significant accumulations of non-metallic inclusions and quenching microcracks located along the boundaries of the phase interface was estimated at 12 and 9 %. The regularities and mechanism of influence of the rejects chemical composition of K76F rail steel billets on the probability of destruction of the balls produced from them during impact resistance tests were established. An increase in sulfur content in the billets of the studied rail steel reduces impact resistance of the balls produced from them, as it contributes to formation of non-plastic sulfides that concentrate in the area of internal cracks. An increase in hydrogen content in rail steel naturally contributes to an increase in probability of formation of the flocks, which significantly reduce the balls stability to shock loads. An increase in carbon content in the initial billets affects the increase in probability of destruction of K76F steel balls during copra tests. It is explained by formation of cementite-type carbides when carbon content corresponding to the eutectoid steel is reached. In general, the relative degree of influence of the K76F rail steel chemical composition on impact resistance of grinding balls is 48 %.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call