Abstract

Capnophilic lactic fermentation (CLF) is an anaplerotic pathway exclusively identified in the anaerobic hyperthermophilic bacterium Thermotoga neapolitana, a member of the order Thermotogales. The CO2-activated pathway enables non-competitive synthesis of hydrogen and L-lactic acid at high yields, making it an economically attractive process for bioenergy production. In this work, we discovered and characterized CLF in Thermotoga sp. strain RQ7, a naturally competent strain, opening a new avenue for molecular investigation of the pathway. Evaluation of the fermentation products and expression analyses of key CLF-genes by RT-PCR revealed similar CLF-phenotypes between T. neapolitana and T. sp. strain RQ7, which were absent in the non-CLF-performing strain T. maritima. Key CLF enzymes, such as PFOR, HYD, LDH, RNF, and NFN, are up-regulated in the two CLF strains. Another important finding is the up-regulation of V-ATPase, which couples ATP hydrolysis to proton transport across the membranes, in the two CLF-performing strains. The fact that V-ATPase is absent in T. maritima suggested that this enzyme plays a key role in maintaining the necessary proton gradient to support high demand of reducing equivalents for simultaneous hydrogen and lactic acid synthesis in CLF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.