Abstract

Benzothiazole (BTHs), benzotriazole (BTRs) and benzenesulfonamide (BSAs) derivates are high production volume chemicals and they are used in several industrial and household applications, therefore it is expected their occurrence in various environments, especially water and air. In this study we developed a method based on gas chromatography-mass spectrometry (GC-MS) combined with pressurised liquid extraction (PLE) to simultaneously determine four BTR, five BTH and six BSA derivates in the particulate matter (PM10) of outdoor air samples collected in quartz fibre filters (QFFs). To the best of our knowledge, this is the first time these compounds have been determined in open ambient environments. Under optimised conditions, method recoveries at the lower and upper concentration levels (0.8 and 4.2 ng m−3) ranged from 70 to 120%, except for 1-H-benzothiazole and 2-chlorobenzothiazole, which were about 50%. The repeatability of the method was usually below 20% (n = 3, %RSD) for both concentration levels. This method enables the contaminants to be detected at pg m−3 concentration levels. Several samples from two different sites influenced by local industries showed that BTRs, followed by BTHs, were the most detected compounds, whereas BSAs were hardly found. The most frequently determined compounds were 1-H-benzothiazole, 2-chlorobenzothiazole, 1-H-benzotriazole, 2-hydroxibenzothiazole, 5,6-dimethyl-1-H-benzotriazole and the isomers 4- and 5-methyl-1-H-benzotriazole. With the concentrations found, the human exposure assessment and health risk characterization via ambient inhalation were also evaluated taking into account different subpopulation groups classified by age for the two sampling points.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call