Abstract

Concentration and mass accumulation rate profiles from Southeastern Atlantic sediment cores located off Namibia show that an exceptional episode in benthic carbonate dissolution occurred during early glacial isotope stage 6 (substages 6.6 and 6.5) between about 186 000 and 170 000 yr BP. Although this episode is restricted to or is more pronounced in this region than in other areas of the Atlantic Ocean, its exceptional character with respect to older and younger climatic episodes at the same site cannot be fully explained by local factors alone, but requires a combination of local and global influences. The onset of the carbonate dissolution episode is related to a more efficient transfer of organic matter from surface eutrophic areas to the lower and is due to low sea level, while its termination relates to a change in either global ocean alkalinity or bottom water circulation. An evaluation of the magnitude of this local carbonate dissolution episode suggests that its contribution to a global alkalinity change may have been significant. Carbonate dissolution was probably amplified by stronger upwelling activity of the Benguela System linked to an exceptional northern excursion of the boreal summer ITCZ during early glacial isotope stage 6. This low latitude global linkage may explain how this carbonate dissolution event as well as other ‘anomalies’ observed for early stage 6, like an important Dole effect minimum or a ‘cold’ Mediterranean sapropel, are related.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.