Abstract

ABSTRACTVolatile organic compounds (VOCs) are ubiquitous in the environment due to evaporation and incomplete combustion of fuels, use of consumer and personal care products, etc. and they can accumulate in foods. Some VOCs in foods can also be formed during food processing and preparation and migrate from food packaging. In this pilot study, a GC-MS method based on headspace solid-phase microextraction (SPME) was validated and used to analyse selected individual foods which can be consumed directly and 153 different total diet composite food samples for 13 VOCs. Vinyl chloride was not detected in any of the 153 composite food samples, while the other 12 VOCs were detected at various frequencies, with m-xylene being the most frequently detected (in 151 of the 153 samples), followed by toluene (145), 1,3,5-trimethylbenzene (140), ethylbenzene (139), styrene (133), 1,2,4-trimethylbenzene (122), benzene (96), p-dichlorobenzene (95), n-butylbenzene (55), chloroform (45), naphthalene (45) and trichloroethylene (31). Concentrations of the 12 VOCs in most of the food composite samples were low, with the 90th percentiles from 1.6 ng g–1 for n-butylbenzene to 20 ng g–1 for toluene. However, some VOCs were detected at higher levels with maxima, for example, of 948 ng g–1 for m-xylene and 320 ng g–1 for ethylbenzene in chewing gum, 207 ng g–1 for styrene and 157 ng g–1 for toluene in herbs and spices. VOCs were detected at higher levels in most of the individual food items than their corresponding composite samples, for example, the average chloroform concentration in the individual canned soft drinks was 20 ng g–1 compared with 3.0 ng g–1 in their composite, and the average toluene concentration in the individual canned citrus juice was 96 ng g–1 compared with 0.68 ng g–1 in their composite. Thus, for determination of VOCs in foods which can be consumed directly, their individual food items should be analysed whenever possible for accurate exposure assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.