Abstract

Groundwater in some deep wells of Maydavood aquifer, southwestern Iran, contains relatively high concentrations of arsenic. Detailed hydrochemical analysis of these groundwaters (with ICP-OES instrument) showed that concentrations of iron, manganese, nickel, and vanadium are also high in them and concentrations of total arsenic in 81% of deep wells are greater than World Health Organization’s permissible value (10 ppb). XRF analysis of surrounding geological formations and aquifer sediments proposed that original source of arsenic in aquifer material can be attributed to minerals from Asmari Formation. It appears that a key mechanism for arsenic mobilizing to deep wells is microbial biodegradation of petroleum related organic matters (PROMs), which exist in aquifer sediments and originates from the bedrock of the aquifer (Gachsaran Formation). This process is followed by microbially mediated reductive dissolution of arsenic-bearing iron/manganese oxyhydroxides/oxides and further by nickel and vanadium mobilizing to groundwater. According to hydrogeochemical conditions and cluster analysis, water wells in Maydavood aquifer are divided to four subgroups: the wells with mildly reducing condition (subgroup I), moderately reducing condition (subgroup II), reducing condition (subgroup III), and high reducing condition (subgroup IV). Affected wells to arsenic are belonged to subgroups III and IV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call