Abstract

Equatorial Plasma Bubbles (EPBs) are irregular plasma density depletions in the ambient electron density in the equatorial F-region ionosphere generated after sunset. EPBs are known to bring disruptions to telecommunication and navigation systems. This paper investigates the occurrence of EPBs over Kisumu, Kenya (Geomagnetic coordinates: 9.64o S, 108.59o E; Geographic coordinates: 0.02o S, 34.6o E) for a few selected quiet and storm days between 1st January 2013 and 31st December 2014 which was a high Solar activity period for Solar Cycle 24. The study brings out EPB occurrence pattern over Kisumu, Kenya for the selected quiet and storm days of 2013 and 2014. The Receiver Independent Exchange (RINEX) data was retrieved from the Kisumu high data-rate NovAtel GSV4004B SCINDA-GPS receiver. The data was unzipped and processed to obtain Vertical Total Electron Content (VTEC), amplitude scintillation (S4) and Universal Time (UT) which were then fed into MATLAB to generate VTEC and S4 plots against UT for each selected quiet and storm day within the years 2013 and 2014. The Total Electron Content (TEC) depletion depths and S4 index values between 16:00 and 20:00 UT for each selected quiet and storm day were extracted from the VTEC and S4 plots and used to plot TEC depletion depths and S4 plots. The Rate of Change of TEC (ROT) and Rate of Change of TEC Index (ROTI) between 16:00 and 20:00 UT were generated from VTEC and used to plot ROT and the corresponding ROTI plots against UT. TEC depletion depths and ROTI values for each selected quiet and storm day between 16:00 and 20:00 UT were extracted and used to plot TEC depletion depths and ROTI plots and S4 index and ROTI plots. In this study, the enhancement of S4 index corresponded well with TEC depletions, increased fluctuation of ROT and higher ROTI values between 16:00UT and 20:00UT for most days. This correspondence was used in inferring the occurrence of EPBs during the selected quiet and storm days of the years 2013 and 2014. The obtained results showed that the highest EPB occurrence was during March equinox with 33.33% occurrence in the year 2013 and 30.76% occurrence in the year 2014, followed by the September equinox which had 20.38% occurrence in 2013 and 17.26% occurrence in 2014. The seasonal variation of EPB occurrence was attributed to the variation in the daytime E x B drift velocities. Larger E x B drift velocities resulted in increased EPB occurrence in the equinoctial period (March, April, August and September) and November solstice period (November and December) while lower E x B drift velocities resulted in reduced EPB occurrence in the June solstice period (June and July). The percentage EPB occurrence in the year 2013 was 6.49% while in the year 2014 was 4.32%. The storm period had percentage EPB occurrence of 21.42% in the year 2013 and 21.88% in the year 2014 while the quiet period had percentage EPB occurrence of 18.75% in the year 2013 and 7.89% in the year 2014. These results clearly showed that the percentage EPB occurrence was higher during the storm period than in the quiet period. Hence the development of EPBs was enhanced by geomagnetic activity through several competing dynamics such as Prompt Penetration Electric Field (PPEF), Disturbance Dynamo Electric Field (DDEF) and reduction in electron density due to increased recombination rates. Â

Highlights

  • The Sun produces highly energetic particles such as X-rays and Ultraviolet (UV) radiations (Milos, 2014) which are harmful to the living things and the environment

  • The smallest Total Electron Content (TEC) depletion depths were on 26th June 2013, 4th July 2013 and 24th July 2013 and were attributed to low solar activity since the days were within the June solstice period

  • We have investigated the occurrence of Equatorial Plasma Bubbles (EPBs) over Kisumu, Kenya for a few selected quiet and storm days of 2013 and 2014 using TEC data obtained from SCINDA-GPS

Read more

Summary

Introduction

The Sun produces highly energetic particles such as X-rays and Ultraviolet (UV) radiations (Milos, 2014) which are harmful to the living things and the environment. Paznukhov et al, (2012) carried out a study on equatorial plasma bubbles and L-band scintillations in Africa during solar minimum and their results showed increase in EPB rate during June solstice moving west to East. They observed that seasonal occurrence of EPBs tended to shift towards boreal summer with fewer occurrences in equinox seasons. Barros et al, (2018) carried out a study on the characteristics of EPBs using ground based network of more than 220 GNSS ground based receivers by mapping TEC (TEC maps) over South-America between November 2012 and January 2016 for both quiet and disturbed days Their results showed that EPBs occurred majorly between September to March.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.