Abstract

Organophosphate esters (OPEs), as alternatives to brominated flame retardants, are extensively used in both production and daily life, with their environmental contamination and toxic effects being a concern. This study investigated the concentration levels, bioaccumulation, and ecological effects of OPEs in five different effluent-receiving rivers. The results demonstrate that the concentration range of Σ13OPEs across the five rivers was between 142.23 and 304.56 ng/L (mean: 193.50 ng/L). The highest pollution levels of OPEs were found in rivers receiving airport and industrial wastewater, followed by agricultural wastewater, mixed wastewater, and domestic wastewater. Tris(2-chloroisopropyl) phosphate (TCPP), triethyl phosphate (TEP), and tricresyl phosphate (TCrP) were identified as the main pollutants. The accumulation concentrations of OPEs in fish ranged from 54.0 to 1080.88 ng/g dw, with the highest bioaccumulation found in Pelteobagrus fulvidraco, followed by Carassius auratus and Misgurnus anguillicaudatus. The brain was the primary organ of accumulation, followed by the liver, gills, intestine, and muscle. Tri-n-propyl phosphate (TPeP) and TEP exhibited the highest bioconcentration, with log BAF values exceeding three. The bioaccumulation of OPEs was influenced by pollutant concentration levels, hydrophobic properties, and biological metabolism. Ecological risk assessment revealed that the cumulative risk values of Σ13OPEs ranged from 0.025 to 16.76, with TCrP being the major contributor. It posed a medium-low risk to algae but a high risk to crustaceans and fish.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.