Abstract

This paper is concerned with the generation of multi-stripe chaotic attractors. Simple periodic nonlinear functions are employed to transform the original chaotic attractors to a pattern with multiple “parallel” or “rectangular” stripes. The relationship between the system parameters related to some periodic functions and the shape of the generated attractor is analyzed. Theoretic analysis about the underlying mechanism of generating the parallel stripes in the attractors is given. A general creation mechanism of multi-stripe attractors of the Lorenz system and other well-known chaotic systems is derived from the proposed unified approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.