Abstract

The Xiangshan volcanic-intrusive complex is composed of rhyolitic crystal tuffs, welded tuffs, rhyodacite, porphyroclastic rhyolitic lava, subvolcanic rocks such as granite porphyry, and late quartz monzonitic porphyry and lamprophyre dikes. We report the first occurrence of a quartz–amphibole schist (QAS) xenolith enclosed within a mafic microgranular enclave (MME) in the Xiangshan volcanic-intrusive complex. The mineralogy of this xenolith consists of amphibole, biotite, quartz, and minor plagioclase. Petrographic and mineral composition studies indicate that the protolith of this xenolith likely originated from the metamorphic basement beneath Xiangshan. The amphibole (actinolite and magnesiohorblende) has been partially replaced by orthopyroxene at 800–1000°C and by diopside at <700°C, according to mineral thermometers; this replacement process may have taken place after the xenolith was trapped by the mafic magma host (now an MME). Studies of the QAS xenolith provide new information on the emplacement history of the mafic magma. The peak metamorphic temperature for amphibole replaced by pyroxene is higher than the crystallization temperature of the subvolcanic magma, which indicates that the heat of pyroxene formation must have been provided by the engulfing mafic melt. This magma must have emplaced to crustal level and trapped the QAS as a xenolith and then injected into the felsic magma. We suggested that the hybridization processes for the major elements of the pristine mafic magma may have been contaminated by crustal rocks to form its present composition of MME before mafic magma injection. However, the hybridization process appears not to have been formed via a single-stage process because various types of MMEs are presented in the Mesozoic magmatic rocks of SE China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.