Abstract
Nitrogen removal is a critical process in water treatment plants (WTPs) and wastewater treatment plants (WWTPs). The recent discovery of a novel bacterial process, complete ammonia oxidation (comammox, CMX), has refuted a century-long perception of the two-step conversion of NH3 to NO3–. Compared with canonical nitrifiers, CMX bacteria offer undeniable advantages, such as a high growth yield propensity and adaptability to nutrient- and growth-limiting conditions, which collectively draw attention to validate the aptness of CMX bacteria to wastewater treatment. As there has been no comprehensive review on the relevance of CMX bacteria for sustainable water and wastewater treatment, this review is intended to discuss the roles and applications of CMX in the removal of nitrogen and pollutants from water and wastewater. We took into account insights into the metabolic versatilities of CMX bacteria at the clade and subclade levels. We focused on the distribution of CMX bacteria in engineered systems, niche differentiation, co-occurrence and interactions with canonical nitrifiers for a better understanding of CMX bacteria in terms of their ecophysiology. Conceptualized details on the reactor adaptability and stress response of CMX bacteria are provided. The potential of CMX bacteria to degrade micropollutants either directly or co-metabolically was evaluated, and these insights would be an indispensable advantage in opening the doors for wider applications of CMX bacteria in WWTPs. Finally, we summarized future directions of research that are imperative in improving the understanding of CMX biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.