Abstract

Microplastics have been widely detected in wastewater treatment plants, but there is still a significant dearth of research data on the removal efficiency of microplastics in such plants. The present study focused on three wastewater treatment plants situated in Zhengzhou, China. On-site sampling and Raman spectrum detection techniques were employed to identify microplastics in both wastewater and sludge samples, while the removal efficiency of microplastics was quantified for each plant. Results showed that the abundance of microplastics in influent exhibited ranging from 147.5 ± 2.6 to 288.8 ± 11.8 n/L, while the range in sludge samples was from 12,024.7 ± 1737.0 n/kgdw to 20,818.4 ± 5662.0 n/kgdw. The removal efficiencies of microplastics in the three WWTPs ranged from 76.2% to 91.2%. The primary components of microplastics were generally identified as fibers ranging in size from 10 to 100 μm. The samples collectively exhibited a total of seven distinct colors, with the predominant proportion being transparent. Polypropylene was the polymer type with the highest proportion. The sludge in WWTPs plays a pivotal role in the accumulation of MPs from wastewater bodies, necessitating increased attention toward its proper disposal in future endeavors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call