Abstract

High activities (100-200 micromoles UDP hydrolyzed per milligram chlorophyll per hour) of uridine-5' diphosphatase (UDPase) have been identified in extracts of fully expanded soybean (Glycine max Merr.) leaves. In desalted crude extracts, UDPase activity was strongly inhibited by low concentrations of Mg:ATP (I(50) = 0.3 millimolar). Two forms of the enzyme were resolved by gel filtration on Sephadex G-150. The higher molecular weight form (UDPase I, about 199 kilodaltons by gel filtration) retained ATP sensitivity (I(50) = 0.3 millimolar), whereas the major, lower molecular weight form (UDPase II, about 58 kilodaltons) was markedly less sensitive to ATP inhibition (I(50) = 2.7-3.0 millimolar). Subsequent purification of UDPase I by ion-exchange chromatography on DEAE cellulose produced a lower molecular weight enzyme (about 74 kilodaltons by gel filtration) that had reduced ATP sensitivity similar to UDPase II. Ion-exchange chromatography of UDPase II did not alter molecular weight or ATP sensitivity. UDPase II, after the DEAE-cellulose step, was specific for nucleoside diphosphates. Maximum reaction velocity decreased in the following sequence; UDP > GDP > CDP. ADP was not a substrate for the enzyme. The reaction catalyzed was hydrolysis of the terminal-P of UDP to form UMP. The enzyme was stimulated by Mg(2+) and the pH optimum was centered between pH 6.5 and 7.0. In a survey of various species, soybean cultivars had highest activities of apparent UDPase and other species ranged in apparent activity from 0 to 30 micromoles hydrolyzed per milligram chlorophyll per hour.A heat-stable proteinaceous factor was identified in desalted crude leaf extracts that increased ATP sensitivity of the partially purified enzyme. Apparently, during purification a dissociable factor, that is required for maximum sensitivity to low concentrations (<1 millimolar) of Mg:ATP, is lost from the enzyme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.