Abstract

Antimicrobial resistance genes (ARGs) are environmental pollutants and anthropization indicators. We evaluated human interference in the marine ecosystem through the ocurrence and quantification (real-time PCRs) of 21 plasmid-mediated ARGs in enema samples of 25 wild seabirds, upon admission into rehabilitation: kelp gull (Larus dominicanus, n = 14) and Magellanic penguin (Spheniscus magellanicus, n = 11). Overall, higher resistance values were observed in kelp gulls (non-migratory coastal synanthropic) in comparison with Magellanic penguins (migratory pelagic non-synanthropic). There were significant differences between species (respectively, kelp gull and Magellanic penguin): ARGs occurrence (blaTEM [p = 0.032]; tetM [p = 0.015]; tetA [p = 0.003]; and sulII [p = 0.007]), mean number of ARGs per sample (p = 0.031), ARGs mean load percentage (aadA [p = 0.045], tetA [p = 0.031], tetM [p = 0.016], blaTEM [p = 0.032], sulII [p = 0.008]), percentage of genes conferring resistance to an antimicrobial class (betalactams [p = 0.036] and sulfonamides [p = 0.033]), mean number of genes conferring resistance to one or more antimicrobial classes (p = 0.024]), percentage of multiresistant microbiomes (p = 0.032), and clustering (p = 0.006). These differences are likely due to these species' contrasting biology and ecology - key factors in the epidemiology of ARGs in seabirds. Additionally, this is the first report of mecA in seabirds in the Americas. Further studies are necessary to clarify the occurrence and diversity of ARGs in seabirds, and their role as potential sources of infection and dispersal within the One Health chain of ARGs.

Highlights

  • Antimicrobial resistance is an issue of serious public health concern with global economic, social and political implications affecting human and animal populations, as well as the environment [1,2,3]

  • Microbial resistance is the result of natural bacteria genetic plasticity and interactions between microbial agents, host organisms and the environment [1, 5], enhanced by the selective pressure exerted by antimicrobial usage and over-prescription in human and veterinary medicine treatments, animal and fish production, agriculture and food technologies [1, 5, 6]

  • Fresh fecal samples were immediately obtained by enema [16] in 25 physically restrained birds (14 kelp gulls and 11 Magellanic penguins) upon admission at the wildlife rehabilitation center (Associação R3 Animal, Florianópolis, Santa Catarina state, southern Brazil), and stored at −20◦C until analyses

Read more

Summary

Introduction

Antimicrobial resistance is an issue of serious public health concern with global economic, social and political implications affecting human and animal populations, as well as the environment [1,2,3]. This worldwide phenomenon is compromising our ability to treat infectious diseases, and undermining or preventing advances in health and medicine [4]. The goals of this study were to (i) assess the presence and load of ARGs in these individuals and (ii) evaluate our findings in light of selected biological and ecological parameters (i.e., dispersal [migratory and non-migratory], feeding niche [coastal and pelagic], and interaction with human-impacted areas [synanthropic and non-synanthropic]). We hypothesized that due to their non-migratory coastal synanthropic behavior [24], kelp gull would present higher occurrence and load of ARGs than the migratory pelagic non-synanthropic Magellanic penguin [25, 26]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call