Abstract

The recovery of biopolymers, particularly alginate-like extracellular polymers, from municipal sludge represents a promising step toward sustainable sludge treatment practices. Originating from wastewater plants in complexly polluted environments, alginate-like extracellular polymers carry potential environmental risks concerning their reuse. This study employs ultrahigh-performance liquid chromatography–tandem mass spectrometry to investigate the distribution coefficients and occurrence of alginate-like extracellular polymers and sulfamethoxazole. Results demonstrate a negative distribution coefficient, suggesting an inhibitory effect on sulfamethoxazole dissolution. The ethanol-extracted alginate-like extracellular polymers exhibits higher sulfamethoxazole levels (approximately 52%) than those obtained via dialysis extraction. Three-dimensional excitation-emission matrix analysis and adsorption studies indicate the absence of tyrosine-like substances in the alginate-like extracellular polymers, unlike in other extracellular polymeric substances. This absence diminishes hydrophobic interactions, highlighting that electrostatic interactions play a more important role. These insights are crucial for understanding the adsorption behavior of alginate-like extracellular polymers and optimizing their large-scale extraction processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.