Abstract
Abstract Little is known on the hydrological behavior of the volcanic ash soils, which are characterized by extremely high porosities and hydraulic conductivities. In this study the occurrence and hydrological effects of water repellency were investigated at a plot scale for different types of land use and volcanic soils in Mexican volcanic highlands from Michoacan, Mexico: [1] fir, pine and oak mixed forest soils developed from lavas, [2] soils developed from volcanic ashes and pyroclastic sediments under sparse fir, pine and oak forest and shrubland, [3] pine and oak forested soils developed from lavas and pyroclastic sediments, and [4] bare soils on recent ash sediments in plain surfaces. Soil water repellency was assessed using the water drop penetration time test and rainfall simulations were performed on circular plots (50 cm in diameter) during 30 min and at an intensity of 90 mm h − 1 in order to study the hydrological response of each area. The return period for storms with a similar intensity in the area is 10 years. The shape and depth of the wetting front after simulated rainfall was also analyzed. Soil water repellency showed a high variability among the different studied zones. Organic matter content, soil texture and acidity were the most important factors for developing hydrophobicity. A wide range of soil water repellency classes (hydrophilic to severely water-repellent soils) has been found in soils under dense fir, pine and oak mixed forests or shrubland, while inexistent or slight water repellency has been observed in soils under sparse forest or at bare ash-covered areas. At a plot scale, marked differences in the hydrological behavior of the studied land use and soil zones were observed after the rainfall simulations. Soil water repellency contributes to fast ponding and runoff generation during the first stages of rainstorms. Runoff was enhanced in water-repellent forested soils (average runoff coefficients between 15.7 and 19.9%), in contrast to hydrophilic or slightly water-repellent soils, where runoff rates were lower (between 1.0 and 11.7%). Shallow and irregular wetting fronts were observed at water-repellent zones, reducing the soil water storage capacity. The implications of soil water repellency in soil hydrology and erosion risk in the area shed light on the soil hydrology of the studied ecosystems, and can contribute to develop better management policies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.