Abstract

Organophosphate esters (OPEs) in atmospheric fine particles (PM2.5) were comprehensively investigated in the Beijing-Tianjin-Hebei (BTH) region from April 2016 to March 2017. The concentrations of Σ8OPEs in all the five sampling sites ranged from 90 to 8291 pg/m3 (mean 1148 ± 1239 pg/m3; median 756 pg/m3). The highest level (median 1067 pg/m3) was found at one of the urban sites in Beijing, followed by Tianjin (746 pg/m3) and Shijiazhuang (724 pg/m3). Tris(2-chloroethyl) phosphate (TCEP) and tri[(2R)-1-chloro-2-propyl] phosphate (TCPP) were the dominant compounds across the five sampling locations. Generally, the concentrations of chlorinated OPEs were relatively higher in summer than in winter (p < 0.05), but no significant seasonal difference was discovered for non-chlorinated individual OPEs. The concentrations of tri-n-butyl phosphate (TBP), TCEP, TCPP and triphenyl phosphate (TPP) were positively correlated with the meteorological parameters (i.e. temperature and relative humidity) (p < 0.05), indicating an evident influence of meteorological condition on OPE distribution. We observed a negative correlation (p < 0.05) between octanol-air partition coefficients (logKoa) and the ratio of PM2.5-bound OPE concentrations to total suspended particulates-bound OPE concentrations, suggesting that physicochemical properties affect the particle-size distribution of OPEs. Furthermore, the median value of cancer hazard quotients (HQs) of TCEP was higher than TBP and tris(2-ethylhexyl) phosphate (TEHP). The health risk assessment showed that HQ values for children were ~1.6 times higher than those for adults. Relatively higher health risk induced by PM2.5-bound OPEs via inhalation was found during severe hazy days than in clear days.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.