Abstract
The concerns about the fate of per- and polyfluoroalkyl substances (PFAS) in the atmosphere are continuously growing. In this study, size-fractionated particles, gas, and rainwater samples were simultaneously collected in Shijiazhuang, China, to investigate the multiphase distribution of PFAS in the atmosphere. Perfluoroalkyl carboxylic acids (PFCAs) dominated the total concentration of PFAS in atmospheric media. A strong positive relationship (0.79 < R2 < 0.99) was observed between the concentration of PFCAs and organic matter fraction (fOM) in different particle size fractions, while no such relationship for perfluoroalkyl sulfonic acids (PFSAs) and fOM, suggesting fOM may be an important factor influencing the size-dependent distribution of PFCAs. Temperature played a key role in the gas-particle partitioning of PFAS, while it did not significantly affect their particle-size-dependent distribution. The associative concentration fluctuation of particle and particle-bound PFAS during precipitation suggested that precipitation scavenging was an important mechanism for the removal of PFAS from the atmosphere. Furthermore, temporary increases in atmospheric PFAS concentrations were observed during the precipitation. Fugacity ratios of PFAS in rainwater and gas phase (log fR/fG ranged between 2.0 and 6.6) indicated a strong trend for PFAS to diffuse from the rainwater to the gas phase during the precipitation, which may explain that the concentration of PFAS in the gas phase continued to increase even at the end of the precipitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.