Abstract

This study mapped the fate of antibiotics in a swine farm with integrated waste treatment including anoxic stabilization, fixed-film anaerobic digestion, anoxic-oxic (A/O), and composting. Results show the prevalent and consistent occurrence of 12 antibiotics in swine waste. Mass balance of these antibiotics was calculated to track their flow and evaluate their removal by different treatment units. The integrated treatment train could effectively reduce antibiotic loading to the environment by 90% (measured as combined mass of all antibiotic residues). Within the treatment train, anoxic stabilization as the initial treatment step, accounted for the highest contribution (43%) to overall antibiotic elimination. Results also show that aerobic was more effective than anaerobic regarding antibiotic degradation. Composting accounted for an additional of 31% removal of antibiotics while anaerobic digestion contributed to 15%. After treatment, antibiotic residues in the treated effluent and composted materials were 2 and 8% of the initial antibiotic loading in raw swine waste, respectively. Ecological risk assessment showed negligible or low risk quotient associated with most individual antibiotics released into the aquatic environment or soil from swine farming. Nevertheless, antibiotic residues in treated water and composted materials together showed significant ecological risk to water and soil organisms. Thus, further work to improve treatment performance or develop new technologies is necessary to reduce the impact of antibiotics from swine farming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call