Abstract
Pharmaceutical and personal care products (PPCPs) are among the most frequently reported groups of emerging contaminants in groundwater worldwide. PPCPs in rivers may infiltrate into groundwater through hydraulic exchange and potentially threaten drinking water safety and human health. In the present study, the occurrence and distribution of nine PPCPs in riverbank groundwater and adjacent rivers (distance up to 113 m) were investigated at four sites with different lithological features and permeabilities of aquifers in a city in North China. Seven of nine PPCPs were detectable in groundwater, ranging from <LOQ (limit of quantification) to 128 ng/L. N,N-diethyl-meta-toluamide (DEET), carbamazepine, and caffeine had the highest detection frequencies (>90%). The concentrations and major compounds in river water varied with the sampling location and water system distribution, resulting in distinct compositions of PPCPs in the groundwater at each site along with different lithology and hydrological conditions. The spatial distribution of PPCPs in riverbank groundwater was affected by the hydraulic connection between the groundwater and river and the lithology of aquifers. Direct hydraulic connection of a fine sand aquifer to the adjacent river caused a decrease in PPCPs with increasing distance. The results also suggested that sandy gravel aquifers had a lower capacity to attenuate PPCPs compared to that of fine sand. Significant correlations between PPCP concentrations and thirteen physicochemical factors of groundwater were discovered, including nitrate, potassium, and manganese. Overall, this study provides important evidence on the role of lithology and hydrological conditions on the composition, distribution, and influential physicochemical factors of PPCPs in riverbank groundwater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.