Abstract

Brominated flame retardants (BFRs) and their substitutes are prevalent in the environment, especially near industrial point sources. In non-point source pollution areas, it is crucial to investigate the seasonal pollution characteristics to identify the pollution sources. In this study, compositional profiles, seasonal variations, and ecological risks of legacy BFRs and novel BFRs (NBFRs) in the water and sediment from the Tuojiang River located in southwest China were investigated. The results indicated that ΣBFRs ranged from not detected (n.d.) to 42.0 ng/L in water and from 0.13 to 17.6 ng/g in sediment, while ΣNBFRs ranged from n.d. to 15.8 ng/L in water, and from 0.25 to 6.82 ng/g in sediment. A significant seasonal variation was observed in water and sediments with high proportions of legacy BFRs (median percentage of 68.8% and 51.3% in water and sediment) in the dry season, while NBFRs (median percentage of 53.2% and 71.6% in water and sediment) exhibited predominance in the wet season. This highlighted the importance of surface runoff and atmospheric deposition as important sources of NBFRs in aquatic environments. Moreover, there were high ratios of decabromodiphenyl ethane (DBDPE) and BDE-209 (average: 1.38 and 2.76 in dry and wet season) in sediments adjacent to the residual areas, indicating a consumption shift from legacy BFRs to NBFRs in China. It was observed that legacy BFRs showed higher ecological risks compared to NBFRs in both water and sediment environments, with BDE-209 posing low to medium risks to sediment organisms. This study provides better understanding of contamination characteristics and sources of legacy BFRs and NBFRs in non-point source pollution areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.