Abstract

Biota and surface sediments collected from Lake Ontario were analyzed for polychlorinated naphthalenes (PCNs) and non- and mono-ortho-substituted polychlorinated biphenyls (n/ m-o-PCBs) to compare bioaccumulation behavior of these classes of dioxin-like chemicals in a food web from the Great Lakes. Mean sigmaPCN concentrations (tri-octaCN) ranged from 14 +/- 9 pg/g in plankton to 3500 +/- 3200 pg/g (wet weight) in lake trout while sediments contained from 21 to 38 ng/g (dry weight). Principal components analysis of PCN congener patterns indicated that chlorine substitution determined which congeners favored accumulation (e.g., CN-42, -52, -60, -66, -67, and -73), while others may be subject to metabolism. The bioaccumulative congeners exhibited similar trophic magnification factors (TMFs; 1.23-1.42) and biomagnification factors (BMFs; 5.5-8.6) to the n/m-o-PCBs for the trout/weighted diet relation, although BMFs for a benthic feeding relationship (slimy sculpin/Diporeia) indicated that the n/m-o-PCBs were more bioavailablethroughthe benthic pathway. PCNs contribute significantly to the burden of dioxin-like compounds in Lake Ontario biota, contributing between 12 and 22% of total PCN + PCB TEQ in lake trout and up to 69% in benthic organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.