Abstract

Organohalogen pollutants (OHPs), including dichlorodiphenyl trichloroethane and its metabolites (DDTs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), and dechlorane plus (DP), were determined in three raptor species, namely, the common kestrel (Falco tinnunculus), eagle owl (Bubo bubo), and little owl (Athene noctua), as well as in their primary prey items: Eurasian tree sparrow (Passer montanus) and brown rat (Rattus norvegicus). DDTs were the predominant pollutants in avian species followed by PBDEs and PCBs, then minimally contribution of HBCDs and DP. Inter-species differences in the PBDE congener profiles were observed between the owls and the common kestrels, with relatively high contributions of lower brominated congeners in the owls but highly brominated congeners in the kestrels. This result may partly be attributed to a possible greater in vivo biotransformation of highly brominated BDE congeners in owls than in kestrels. α-HBCD was the predominant diastereoisomer with a preferential enrichment of (−)-enantiomer in all the samples. No stereoselective bioaccumulation was found for DP isomers in the investigated species. Biomagnification factor (BMF) values were generally higher in the rat−owl food chain than in the sparrow−kestrel food chain. Despite this food chain-specific biomagnification, the relationships between the log BMF and log KOW of PCBs and PBDEs followed a similar function in the two food chains, except for BDE-47, -99, and -100 in the sparrow−kestrel feeding relationship.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call